3.4.38 \(\int \frac {\cot (c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\) [338]

Optimal. Leaf size=142 \[ \frac {2 \tanh ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a}}\right )}{a^{3/2} d}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a-b}}\right )}{(a-b)^{3/2} d}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{(a+b)^{3/2} d}+\frac {2 b^2}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \]

[Out]

2*arctanh((a+b*sec(d*x+c))^(1/2)/a^(1/2))/a^(3/2)/d-arctanh((a+b*sec(d*x+c))^(1/2)/(a-b)^(1/2))/(a-b)^(3/2)/d-
arctanh((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2))/(a+b)^(3/2)/d+2*b^2/a/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.14, antiderivative size = 142, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {3970, 912, 1301, 212} \begin {gather*} \frac {2 \tanh ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a}}\right )}{a^{3/2} d}+\frac {2 b^2}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a-b}}\right )}{d (a-b)^{3/2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{d (a+b)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(2*ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a]])/(a^(3/2)*d) - ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a - b]]/((a
- b)^(3/2)*d) - ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]]/((a + b)^(3/2)*d) + (2*b^2)/(a*(a^2 - b^2)*d*Sqr
t[a + b*Sec[c + d*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 912

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> With[{q = De
nominator[m]}, Dist[q/e, Subst[Int[x^(q*(m + 1) - 1)*((e*f - d*g)/e + g*(x^q/e))^n*((c*d^2 + a*e^2)/e^2 - 2*c*
d*(x^q/e^2) + c*(x^(2*q)/e^2))^p, x], x, (d + e*x)^(1/q)], x]] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*
g, 0] && NeQ[c*d^2 + a*e^2, 0] && IntegersQ[n, p] && FractionQ[m]

Rule 1301

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[Ex
pandIntegrand[(f*x)^m*((d + e*x^2)^q/(a + b*x^2 + c*x^4)), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^
2 - 4*a*c, 0] && IntegerQ[q] && IntegerQ[m]

Rule 3970

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[-(-1)^((m - 1
)/2)/(d*b^(m - 1)), Subst[Int[(b^2 - x^2)^((m - 1)/2)*((a + x)^n/x), x], x, b*Csc[c + d*x]], x] /; FreeQ[{a, b
, c, d, n}, x] && IntegerQ[(m - 1)/2] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\cot (c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx &=-\frac {b^2 \text {Subst}\left (\int \frac {1}{x (a+x)^{3/2} \left (b^2-x^2\right )} \, dx,x,b \sec (c+d x)\right )}{d}\\ &=-\frac {\left (2 b^2\right ) \text {Subst}\left (\int \frac {1}{x^2 \left (-a+x^2\right ) \left (-a^2+b^2+2 a x^2-x^4\right )} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{d}\\ &=-\frac {\left (2 b^2\right ) \text {Subst}\left (\int \left (\frac {1}{a \left (a^2-b^2\right ) x^2}-\frac {1}{a b^2 \left (a-x^2\right )}+\frac {1}{2 (a-b) b^2 \left (a-b-x^2\right )}+\frac {1}{2 b^2 (a+b) \left (a+b-x^2\right )}\right ) \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{d}\\ &=\frac {2 b^2}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{a d}-\frac {\text {Subst}\left (\int \frac {1}{a-b-x^2} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{(a-b) d}-\frac {\text {Subst}\left (\int \frac {1}{a+b-x^2} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{(a+b) d}\\ &=\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a}}\right )}{a^{3/2} d}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a-b}}\right )}{(a-b)^{3/2} d}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{(a+b)^{3/2} d}+\frac {2 b^2}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 1.58, size = 322, normalized size = 2.27 \begin {gather*} -\frac {i a^{3/2} (-a+b)^{3/2} \tanh ^{-1}\left (\frac {a-a \cos (c+d x)-i \sqrt {-a \cos (c+d x)} \sqrt {b+a \cos (c+d x)}}{\sqrt {a} \sqrt {a+b}}\right ) \sqrt {b+a \cos (c+d x)}+\sqrt {a+b} \left (2 b^2 \sqrt {-a+b} \sqrt {-a \cos (c+d x)}-2 \sqrt {-a+b} \left (a^2-b^2\right ) \text {ArcTan}\left (\frac {\sqrt {b+a \cos (c+d x)}}{\sqrt {-a \cos (c+d x)}}\right ) \sqrt {b+a \cos (c+d x)}+i a^{3/2} (a+b) \text {ArcTan}\left (\frac {a+a \cos (c+d x)+i \sqrt {-a \cos (c+d x)} \sqrt {b+a \cos (c+d x)}}{\sqrt {a} \sqrt {-a+b}}\right ) \sqrt {b+a \cos (c+d x)}\right )}{a (-a+b)^{3/2} (a+b)^{3/2} d \sqrt {-a \cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

-((I*a^(3/2)*(-a + b)^(3/2)*ArcTanh[(a - a*Cos[c + d*x] - I*Sqrt[-(a*Cos[c + d*x])]*Sqrt[b + a*Cos[c + d*x]])/
(Sqrt[a]*Sqrt[a + b])]*Sqrt[b + a*Cos[c + d*x]] + Sqrt[a + b]*(2*b^2*Sqrt[-a + b]*Sqrt[-(a*Cos[c + d*x])] - 2*
Sqrt[-a + b]*(a^2 - b^2)*ArcTan[Sqrt[b + a*Cos[c + d*x]]/Sqrt[-(a*Cos[c + d*x])]]*Sqrt[b + a*Cos[c + d*x]] + I
*a^(3/2)*(a + b)*ArcTan[(a + a*Cos[c + d*x] + I*Sqrt[-(a*Cos[c + d*x])]*Sqrt[b + a*Cos[c + d*x]])/(Sqrt[a]*Sqr
t[-a + b])]*Sqrt[b + a*Cos[c + d*x]]))/(a*(-a + b)^(3/2)*(a + b)^(3/2)*d*Sqrt[-(a*Cos[c + d*x])]*Sqrt[a + b*Se
c[c + d*x]]))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(2765\) vs. \(2(122)=244\).
time = 0.18, size = 2766, normalized size = 19.48

method result size
default \(\text {Expression too large to display}\) \(2766\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)/(a+b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/4/d*(-1+cos(d*x+c))*(2*cos(d*x+c)*(a-b)^(3/2)*a^(9/2)*ln(4*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(
1/2)*cos(d*x+c)*a^(1/2)+4*a^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)+4*a*cos(d*x+c)+2*b)+2*c
os(d*x+c)*ln(4*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*cos(d*x+c)*a^(1/2)+4*a^(1/2)*((b+a*cos(d*x
+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)+4*a*cos(d*x+c)+2*b)*(a-b)^(3/2)*a^(7/2)*b-2*cos(d*x+c)*(a-b)^(3/2)*a^(
5/2)*ln(4*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*cos(d*x+c)*a^(1/2)+4*a^(1/2)*((b+a*cos(d*x+c))*
cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)+4*a*cos(d*x+c)+2*b)*b^2+2*ln(4*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^
2)^(1/2)*cos(d*x+c)*a^(1/2)+4*a^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)+4*a*cos(d*x+c)+2*b)
*(a-b)^(3/2)*a^(7/2)*b-2*cos(d*x+c)*ln(4*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*cos(d*x+c)*a^(1/
2)+4*a^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)+4*a*cos(d*x+c)+2*b)*(a-b)^(3/2)*a^(3/2)*b^3+
2*(a-b)^(3/2)*a^(5/2)*ln(4*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*cos(d*x+c)*a^(1/2)+4*a^(1/2)*(
(b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)+4*a*cos(d*x+c)+2*b)*b^2-cos(d*x+c)*(a-b)^(3/2)*(a+b)^(1/2)
*ln(-2*(2*cos(d*x+c)*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*(a+b)^(1/2)+2*a*cos(d*x+c)+b*cos(d*x
+c)+2*(a+b)^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)+b)/(-1+cos(d*x+c)))*a^4+cos(d*x+c)*(a-b
)^(3/2)*(a+b)^(1/2)*ln(-2*(2*cos(d*x+c)*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*(a+b)^(1/2)+2*a*c
os(d*x+c)+b*cos(d*x+c)+2*(a+b)^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)+b)/(-1+cos(d*x+c)))*
a^3*b-2*ln(4*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*cos(d*x+c)*a^(1/2)+4*a^(1/2)*((b+a*cos(d*x+c
))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)+4*a*cos(d*x+c)+2*b)*(a-b)^(3/2)*a^(3/2)*b^3+4*cos(d*x+c)*(a-b)^(3/2)*((b
+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*a^2*b^2+4*cos(d*x+c)*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x
+c))^2)^(1/2)*(a-b)^(3/2)*a*b^3-(a-b)^(3/2)*(a+b)^(1/2)*ln(-2*(2*cos(d*x+c)*((b+a*cos(d*x+c))*cos(d*x+c)/(1+co
s(d*x+c))^2)^(1/2)*(a+b)^(1/2)+2*a*cos(d*x+c)+b*cos(d*x+c)+2*(a+b)^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d
*x+c))^2)^(1/2)+b)/(-1+cos(d*x+c)))*a^3*b+(a-b)^(3/2)*(a+b)^(1/2)*ln(-2*(2*cos(d*x+c)*((b+a*cos(d*x+c))*cos(d*
x+c)/(1+cos(d*x+c))^2)^(1/2)*(a+b)^(1/2)+2*a*cos(d*x+c)+b*cos(d*x+c)+2*(a+b)^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c
)/(1+cos(d*x+c))^2)^(1/2)+b)/(-1+cos(d*x+c)))*a^2*b^2-2*(a-b)^(3/2)*a^(1/2)*ln(4*((b+a*cos(d*x+c))*cos(d*x+c)/
(1+cos(d*x+c))^2)^(1/2)*cos(d*x+c)*a^(1/2)+4*a^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)+4*a*
cos(d*x+c)+2*b)*b^4+cos(d*x+c)*ln(-(-1+cos(d*x+c))*(2*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*cos
(d*x+c)*(a-b)^(1/2)+2*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*(a-b)^(1/2)-2*a*cos(d*x+c)+b*cos(d*
x+c)-b)/sin(d*x+c)^2/(a-b)^(1/2))*a^6+cos(d*x+c)*ln(-(-1+cos(d*x+c))*(2*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*
x+c))^2)^(1/2)*cos(d*x+c)*(a-b)^(1/2)+2*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*(a-b)^(1/2)-2*a*c
os(d*x+c)+b*cos(d*x+c)-b)/sin(d*x+c)^2/(a-b)^(1/2))*a^5*b-cos(d*x+c)*ln(-(-1+cos(d*x+c))*(2*((b+a*cos(d*x+c))*
cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*cos(d*x+c)*(a-b)^(1/2)+2*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/
2)*(a-b)^(1/2)-2*a*cos(d*x+c)+b*cos(d*x+c)-b)/sin(d*x+c)^2/(a-b)^(1/2))*a^4*b^2-ln(-(-1+cos(d*x+c))*(2*((b+a*c
os(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*cos(d*x+c)*(a-b)^(1/2)+2*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x
+c))^2)^(1/2)*(a-b)^(1/2)-2*a*cos(d*x+c)+b*cos(d*x+c)-b)/sin(d*x+c)^2/(a-b)^(1/2))*cos(d*x+c)*a^3*b^3+4*((b+a*
cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*(a-b)^(3/2)*a^2*b^2+4*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c
))^2)^(1/2)*(a-b)^(3/2)*a*b^3+ln(-(-1+cos(d*x+c))*(2*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*cos(
d*x+c)*(a-b)^(1/2)+2*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*(a-b)^(1/2)-2*a*cos(d*x+c)+b*cos(d*x
+c)-b)/sin(d*x+c)^2/(a-b)^(1/2))*a^5*b+ln(-(-1+cos(d*x+c))*(2*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(
1/2)*cos(d*x+c)*(a-b)^(1/2)+2*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*(a-b)^(1/2)-2*a*cos(d*x+c)+
b*cos(d*x+c)-b)/sin(d*x+c)^2/(a-b)^(1/2))*a^4*b^2-ln(-(-1+cos(d*x+c))*(2*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d
*x+c))^2)^(1/2)*cos(d*x+c)*(a-b)^(1/2)+2*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*(a-b)^(1/2)-2*a*
cos(d*x+c)+b*cos(d*x+c)-b)/sin(d*x+c)^2/(a-b)^(1/2))*a^3*b^3-ln(-(-1+cos(d*x+c))*(2*((b+a*cos(d*x+c))*cos(d*x+
c)/(1+cos(d*x+c))^2)^(1/2)*cos(d*x+c)*(a-b)^(1/2)+2*((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*(a-b)
^(1/2)-2*a*cos(d*x+c)+b*cos(d*x+c)-b)/sin(d*x+c)^2/(a-b)^(1/2))*a^2*b^4)*cos(d*x+c)*((b+a*cos(d*x+c))/cos(d*x+
c))^(1/2)*4^(1/2)/((b+a*cos(d*x+c))*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)/(b+a*cos(d*x+c))/sin(d*x+c)^2/(a-b)^(5/
2)/a^2/(a+b)^2

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(cot(d*x + c)/(b*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 414 vs. \(2 (122) = 244\).
time = 46.02, size = 3924, normalized size = 27.63 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/4*(8*(a^3*b^2 - a*b^4)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c) + 2*(a^4*b - 2*a^2*b^3 + b^5 +
(a^5 - 2*a^3*b^2 + a*b^4)*cos(d*x + c))*sqrt(a)*log(-8*a^2*cos(d*x + c)^2 - 8*a*b*cos(d*x + c) - b^2 - 4*(2*a*
cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))) - (a^4*b + 2*a^3*b^2 + a^2*b
^3 + (a^5 + 2*a^4*b + a^3*b^2)*cos(d*x + c))*sqrt(a - b)*log(-((8*a^2 - 8*a*b + b^2)*cos(d*x + c)^2 + b^2 + 4*
((2*a - b)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b - 3
*b^2)*cos(d*x + c))/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + (a^4*b - 2*a^3*b^2 + a^2*b^3 + (a^5 - 2*a^4*b + a
^3*b^2)*cos(d*x + c))*sqrt(a + b)*log(-((8*a^2 + 8*a*b + b^2)*cos(d*x + c)^2 + b^2 - 4*((2*a + b)*cos(d*x + c)
^2 + b*cos(d*x + c))*sqrt(a + b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b + 3*b^2)*cos(d*x + c))/(co
s(d*x + c)^2 - 2*cos(d*x + c) + 1)))/((a^7 - 2*a^5*b^2 + a^3*b^4)*d*cos(d*x + c) + (a^6*b - 2*a^4*b^3 + a^2*b^
5)*d), -1/4*(4*(a^4*b - 2*a^2*b^3 + b^5 + (a^5 - 2*a^3*b^2 + a*b^4)*cos(d*x + c))*sqrt(-a)*arctan(2*sqrt(-a)*s
qrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/(2*a*cos(d*x + c) + b)) - 8*(a^3*b^2 - a*b^4)*sqrt((a*cos(
d*x + c) + b)/cos(d*x + c))*cos(d*x + c) + (a^4*b + 2*a^3*b^2 + a^2*b^3 + (a^5 + 2*a^4*b + a^3*b^2)*cos(d*x +
c))*sqrt(a - b)*log(-((8*a^2 - 8*a*b + b^2)*cos(d*x + c)^2 + b^2 + 4*((2*a - b)*cos(d*x + c)^2 + b*cos(d*x + c
))*sqrt(a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b - 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 + 2*c
os(d*x + c) + 1)) - (a^4*b - 2*a^3*b^2 + a^2*b^3 + (a^5 - 2*a^4*b + a^3*b^2)*cos(d*x + c))*sqrt(a + b)*log(-((
8*a^2 + 8*a*b + b^2)*cos(d*x + c)^2 + b^2 - 4*((2*a + b)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a + b)*sqrt((a*
cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b + 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)))/((a^
7 - 2*a^5*b^2 + a^3*b^4)*d*cos(d*x + c) + (a^6*b - 2*a^4*b^3 + a^2*b^5)*d), -1/4*(2*(a^4*b + 2*a^3*b^2 + a^2*b
^3 + (a^5 + 2*a^4*b + a^3*b^2)*cos(d*x + c))*sqrt(-a + b)*arctan(-2*sqrt(-a + b)*sqrt((a*cos(d*x + c) + b)/cos
(d*x + c))*cos(d*x + c)/((2*a - b)*cos(d*x + c) + b)) - 8*(a^3*b^2 - a*b^4)*sqrt((a*cos(d*x + c) + b)/cos(d*x
+ c))*cos(d*x + c) - 2*(a^4*b - 2*a^2*b^3 + b^5 + (a^5 - 2*a^3*b^2 + a*b^4)*cos(d*x + c))*sqrt(a)*log(-8*a^2*c
os(d*x + c)^2 - 8*a*b*cos(d*x + c) - b^2 - 4*(2*a*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c
) + b)/cos(d*x + c))) - (a^4*b - 2*a^3*b^2 + a^2*b^3 + (a^5 - 2*a^4*b + a^3*b^2)*cos(d*x + c))*sqrt(a + b)*log
(-((8*a^2 + 8*a*b + b^2)*cos(d*x + c)^2 + b^2 - 4*((2*a + b)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a + b)*sqrt
((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b + 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)))/
((a^7 - 2*a^5*b^2 + a^3*b^4)*d*cos(d*x + c) + (a^6*b - 2*a^4*b^3 + a^2*b^5)*d), -1/4*(4*(a^4*b - 2*a^2*b^3 + b
^5 + (a^5 - 2*a^3*b^2 + a*b^4)*cos(d*x + c))*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)
)*cos(d*x + c)/(2*a*cos(d*x + c) + b)) + 2*(a^4*b + 2*a^3*b^2 + a^2*b^3 + (a^5 + 2*a^4*b + a^3*b^2)*cos(d*x +
c))*sqrt(-a + b)*arctan(-2*sqrt(-a + b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((2*a - b)*cos(d*
x + c) + b)) - 8*(a^3*b^2 - a*b^4)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c) - (a^4*b - 2*a^3*b^2 +
 a^2*b^3 + (a^5 - 2*a^4*b + a^3*b^2)*cos(d*x + c))*sqrt(a + b)*log(-((8*a^2 + 8*a*b + b^2)*cos(d*x + c)^2 + b^
2 - 4*((2*a + b)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a + b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a
*b + 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)))/((a^7 - 2*a^5*b^2 + a^3*b^4)*d*cos(d*x + c)
+ (a^6*b - 2*a^4*b^3 + a^2*b^5)*d), 1/4*(2*(a^4*b - 2*a^3*b^2 + a^2*b^3 + (a^5 - 2*a^4*b + a^3*b^2)*cos(d*x +
c))*sqrt(-a - b)*arctan(2*sqrt(-a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((2*a + b)*cos(d*x
 + c) + b)) + 8*(a^3*b^2 - a*b^4)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c) + 2*(a^4*b - 2*a^2*b^3
+ b^5 + (a^5 - 2*a^3*b^2 + a*b^4)*cos(d*x + c))*sqrt(a)*log(-8*a^2*cos(d*x + c)^2 - 8*a*b*cos(d*x + c) - b^2 -
 4*(2*a*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))) - (a^4*b + 2*a^3*b^2
 + a^2*b^3 + (a^5 + 2*a^4*b + a^3*b^2)*cos(d*x + c))*sqrt(a - b)*log(-((8*a^2 - 8*a*b + b^2)*cos(d*x + c)^2 +
b^2 + 4*((2*a - b)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4
*a*b - 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)))/((a^7 - 2*a^5*b^2 + a^3*b^4)*d*cos(d*x + c
) + (a^6*b - 2*a^4*b^3 + a^2*b^5)*d), -1/4*(4*(a^4*b - 2*a^2*b^3 + b^5 + (a^5 - 2*a^3*b^2 + a*b^4)*cos(d*x + c
))*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/(2*a*cos(d*x + c) + b)) - 2
*(a^4*b - 2*a^3*b^2 + a^2*b^3 + (a^5 - 2*a^4*b + a^3*b^2)*cos(d*x + c))*sqrt(-a - b)*arctan(2*sqrt(-a - b)*sqr
t((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((2*a + b)*cos(d*x + c) + b)) - 8*(a^3*b^2 - a*b^4)*sqrt((a*
cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c) + ...

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\cot {\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Integral(cot(c + d*x)/(a + b*sec(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(co

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\mathrm {cot}\left (c+d\,x\right )}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)/(a + b/cos(c + d*x))^(3/2),x)

[Out]

int(cot(c + d*x)/(a + b/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________